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ABSTRACT 

Wave blocking in river inlets is examined using the NHWAVE (Non-Hydrostatic Wave) 

model under development. Blocking flows at river inlets are a significant hazard to 

navigation. Refractive and shoaling effects contribute to the enhancement of wave field 

energy, causing instabilities and breaking, resulting in energy dissipation and transfer at 

the blocking point. The non-linearity of wave-current interactions and wave breaking 

makes the dynamics of blocking flows difficult to model. Current efforts to use wave-

averaged models are insufficient to describe the complex dynamics that occur within one 

or two wavelengths of a blocking point. NHWAVE uses the non-hydrostatic, 

incompressible Navier-Stokes equations to model fully dispersive wave processes in the 

time domain. Monochromatic wave cases are explored and compared with lab 

experiments of energy dissipation due to wave breaking under conditions of strong 

opposing current, conducted in 2002 at the University of Delaware by A. Chawla and 

T. J. Kirby. The model was initially unable to resolve the boundary conditions necessary 

to model wave blocking in a tank domain. However, developments to the numerical 

scheme in NHWAVE have advanced its capability in this regard. Due to the difficulties 

of modeling the dynamics of wave blocking and the boundary conditions in a wave tank, 

only preliminary results were obtained. NHWAVE needs further development; it shows 

promise, however, to be able to predict wave reflection, blocking, and dissipation on a 

strong opposing current.  
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I. INTRODUCTION 

Wave fields propagating into regions of significant opposing flow, such as at the 

mouth of a tidal inlet, can be a significant hazard to navigation for mariners, affect the 

design of coastal structures, and alter the transport of sediment in the near shore region. 

As a wave field propagates into an opposing current, the group velocity reduces leading 

to an increase in wave height and decrease in wavelength. These waves can break causing 

energy dissipation, or the group velocity can go to zero in which case the wave field is 

blocked. If the current is not strong enough and the wave amplitude is relatively small, 

the waves can also be reflected from the blocking point. Energy transfers in blocking 

flow cause the wave environment to become very rough and difficulties in navigating and 

transiting these inlet areas are common.  

A. WAVE BLOCKING THEORY 

The basis of previous research on small-scale wave-current interactions is the 

Doppler-shifted dispersion relation for waves moving on uniform currents (Perigrine 

1976). In the case of a wave field opposing a tidal current, the time and length scales for 

the tidal current flow are much larger than the wave period and wavelength. This allows 

kinematic properties of plane waves to be applied on uniform currents. By applying a 

depth uniform current U and using a reference frame that is moving with the current, the 

equations and solutions for water-wave movement are the same as for no current 

(Jonsson 1990). Previous study of waves moving on a vertically sheared but weak current 

showed that by using the small parameter ε=U/c, where c is the wave phase speed, 

through O(ε) 

 (  kU cos )2  gk tanh(kh)  2   (1) 

where ω and k are the fixed reference frame radian frequency and wave number, and σ is 

the intrinsic frequency defined by linear theory (Kirby and Chen 1989). The still water 

depth is h and α is the angle between wave propagation and the underlying current. This 

is identical to the dispersion relation for arbitrary water depth using the intrinsic 
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frequency ω-kU. Defining ω as wave frequency in a reference frame moving with the 

current, the wave phase speed in both frames of reference is related by   

 

k


k
 U cos   (2) 

or 

   k U     (3) 

where wave number, k, remains unchanged in the two reference frames. Application of σ 

is dependent on the wave theory used.  

The kinematic wave blocking condition is described using the Doppler-shifted 

dispersion relation for waves and is obtained by assuming depth uniform currents, 

Equation (3), along with an expression for ω. Differentiating with respect to k and setting 

the group velocity to zero gives 

   (4) 

where 

 U  U cos   (5) 

Due to the cosα	 term, blocking only occurs for α between 90° and 270° (Chawla and 

Kirby 2002).  

The graphical solution of the Doppler-shifted dispersion relation, Equation (3), 

shows the limits of different wave-blocking scenarios to be addressed in this paper, 

(Figure 1). Using linear wave theory, Equation (1) becomes , and is 

plotted as a blue curve for the case of currents directly opposing the wave field, α=180°. 

In Figure (1a), Equation (3) is computed with a constant current speed, U1 for different ω 

values and plotted as a green, red, and cyan line (ω1, ω2, and ω3). For increasing 

frequency and a constant current, U, the solution evolves from wave-current interactions, 

to a blocked wave field. The ω1 line is a solution for waves below the blocking frequency 

for the given current. These waves will have interaction with the current, but will not be 

blocked. Where  becomes tangent to Equation (1) at point A, defines the 


k

 U

  gk tanh kh

  k U 
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blocking solution. This Doppler-shifted solution represents the frequency at which the 

given current will block the wave field. Waves above this curve have no solution; this is 

indicated by ω3 in which all waves will be blocked. 

The blocking scenario is categorized in Figure (1b) where the dispersion relation 

is solved at a particular frequency, ω2. The horizontal line represents a wave only 

scenario with U=0. Solutions below this line, in the dotted area, will have no current 

interactions. This is the case for solutions from point A to point B. From point B to C, in 

the presence of an opposing current, the wave number will increase and the wavelength 

will become shorter. Here, the solutions are shown in the vertically lined section. As k 

increases further and the group velocity decreases, the complete blocking scenario is 

reached and is represented by point C. There is no solution for waves interacting with 

stronger currents above the ω2 line and therefore the solution never increases over this 

line for a blocking current. For current smaller than the wave blocking current but with 

higher k, there is a solution in the wiggly line section. In this case, while the waves are 

moving opposite the flow, the wave energy travels with the current, opposite the wave 

motion. The solution represents reflection and partial wave blocking (Chawla, 1999). 
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Figure 1.  Graphical solution to the dispersion relation. a) Solution for constant  
current and different frequencies ω1, ω2, and ω3. b) Solution for increasing 

current, dots=wave only, lines=wave-current interaction,  
wiggly lines=wave-current interactions with some reflection 

B. BASIS FOR STUDY 

The Office of Naval Research has directed research initiatives to study the 

complex wave-current dynamics in the nearshore region. As the Navy moves further 

inshore and upstream, these conditions at river inlets become more important to 

understand. This effort is focused on developing a model that can handle the complex 
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dynamics and boundary conditions involved in modeling a tank domain with both waves 

and currents so that future application to the field is possible. 

Most previous studies and theoretical analyses on wave blocking have been 

limited to linear wave theory. Due to the sharp steepening of waves just prior to the 

blocking point, this approach is only valid for small amplitude waves. In locations such 

as a river inlet, where wave heights can be great, an approach that can model the non-

linear effects is needed.  

1. Motivation 

Wave-current interactions are an important consideration in coastal 

oceanography. Non-linear interactions can cause significant effects to mass transport, 

large amplitude wave crests can cause damage to coastal structures, and the turbulence 

induced by the kinematics can be dangerous for maritime vessels. Modeling these effects 

to predict the dynamic conditions in areas of opposing flow and wave-blocking is of great 

importance and is difficult. Despite recent studies in non-linear wave-current interactions, 

there is still a limited understanding of how energy is transferred or dissipated at wave 

blocking locations.  

Field measurements at river inlets, where a strong ebb tidal jet meets an opposing 

wave field inducing significant wave-current interaction and wave-blocking, are 

becoming more common with improvements in field observation techniques and 

instruments. Simulating these conditions in a model poses issues of scaling and boundary 

conditions that are not present in field data. Simulating a tank condition in a model 

domain further removes the dynamics from the environmental truth but is necessary to 

study individual wave components and improve understanding of energy transfers 

through blocking regions. 

Understanding wave blocking with NHWAVE allows for potentially better 

parameterization with more robust wave-averaged models that run faster. Currently those 

models under predict wave heights and breaking by about one half. This is due to the 

non-linear effects occurring at distances on the order of a wavelength, this causes wave 

solutions in wave-averaged models to fail. 
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A model of the wave-current interactions at an inlet can potentially describe the 

fully non-linear processes in wave blocking. A number of difficulties are associated with 

numerical implementations in modeling, which will be described in this research. This 

study will review some of the contemporary attempts to model and predict the physics of 

wave blocking and discuss the development of one model in particular.  

2. Objective 

In the Chawla and Kirby (2002) experimental study, hereafter referred to as 

CK02, monochromatic and random wave fields were created with an opposing current in 

a wave flume. A conservation of wave action numerical model was used to describe 

waves on an opposing current. A simple probabilistic bore model was used to describe 

dissipation by wave breaking to replicate the lab data. While good correlations with 

laboratory data were obtained in this simplified model, extension to a more complex 

model that can handle dynamics in the wave-blocking region in the time domain is 

attempted here. 

The objective of this research is to develop the NHWAVE model (described in 

future sections) to predict wave-current interactions and blocking compared with 

extensive laboratory data described in CK02. Of particular interest is the amplitude 

envelope of monochromatic waves in cases varying from complete blocking and 

reflection, to total wave transmission through the blocking point. Energy transfers and 

dissipation in larger amplitude breaking wave cases will also be explored in the model. In 

the following, data from the tank experiment is used to develop a model in a refractive, 

monochromatic wave setting. NHWAVE has been modified to characterize wave-current 

interactions in a new and innovative way, showing its potential in this modeling 

environment, and adding relevance to more general modeling of wave blocking at river 

inlets. 
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II. THEORETICAL BACKGROUND 

A. INTRODUCTION 

Previous studies of wave-current interactions have been limited to linear wave 

theory. However, when the opposing current is strong enough, waves become blocked, 

and linear theory breaks down at the blocking point. Both refractive and shoaling effects 

contribute to the enhancement of energy, causing instabilities and breaking that result in 

energy dissipation and transfer at the blocking point. The non-linearity of wave-current 

interactions makes the dynamics of blocking flows difficult to model. 

B. PREVIOUS MODEL APPROACHES 

1. Boussinesq Models 

Non-linear Boussinesq-type wave models have been used to describe the 

refraction, diffraction, shoaling, and breaking of wave fields in the coastal region. The 

original equations by Boussinesq (1872), describes water waves in incompressible, 

inviscid fluid and non-rotating flow and are based on combining the horizontal 

momentum flux and the continuity equations and retaining terms 
a

h kh 2









 O(1), the 

Ursell Number, where a is amplitude, 

 
2
t 2  gh

2
x2  gh

2

x2

3

2

2

h


1

3
h2 

2
x2






 0  (6) 

η is the free surface elevation, g is the gravitational acceleration, and t and x are time and 

horizontal location. Models based on this theory with improved non-linearity and 

dispersion characteristics by including higher order terms have been well tested and are 

efficient models of wave propagation. The non-linear aspects of the improved models 

allow the amplitude dispersion and energy transfer effects in wave blocking scenarios to 

be well represented. Conversely, for short waves, wave dispersion properties are not well 

predicted and this deviation only increases with increasing wave number. The governing 
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equations do not include dissipation due to wave breaking, and thus, become invalid 

under any breaking conditions. Attempts to include turbulent mixing and dissipation 

caused by breaking in these models have used artificial eddy viscosity terms (Heitner and 

Housner 1970, Tau 1983, Zelt 1991, and Kennedy et al. 2000 amongst others). This 

approach is useful for weakly non-linear waves, with longer wavelengths. However, this 

is not the case in wave-blocking scenarios, and therefore these methods are not sufficient 

to model wave-breaking on an opposing current and the turbulence that occurs at wave-

blocking points.  

2. Non-linear Shallow Water Equations (NLSW) 

The non-linear shallow water equations assume a hydrostatic pressure distribution 

that is violated at the point of wave-breaking. In basic form 

 

dD

dt
 u

dD

dx
 D

du

dx
 0

du

dt
 u

dx

du
 g

dD

dx
 0

  (7) 

where u is the horizontal current velocity and D    h   is the water depth. 

Traditionally, the effect of non-hydrostatic pressure can be modeled using the 

Bousinesque-type approximation and adding higher order terms to the NLSW equations. 

The NLSW equations are then extended with the addition of the vertical motion equation, 

a deviation from hydrostatic pressure, making them equivalent to the incompressible 

Navier-Stokes equation. In this approach, as with previous modeling techniques, there is 

difficulty in simulating the free surface that inhibits accurate prediction of wave-current 

interactions at blocking points.  
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3. Renolds Averaged Navier-Stokes Equations (RANS) 

These efforts led to solving the Reynolds averaged Navier-Stokes equations with 

simultaneous computation of the vertical structure and horizontal variations,  

 uj

ui

x j

  fi 

x j

 p ij  
ui

x j


uj

xi









  ui

uj














     
i  1,2,3

j  1,2,3
  (8) 

where f  is representative of external forces and the over-bar indicates time averaging. 

The instantaneous velocity and pressure terms are decomposed into a constant and a 

fluctuating component that are time averaged on the scale of the wave period. In  

both the Boussinesq and NLSW equation methods, uniform pressure and velocity 

distributions are assumed. Also, the RANS method does not employ the simple 

turbulence parameterization as in previous methods.  

4. Free Surface Treatment 

Of importance in all modeling techniques is the treatment of the free surface and 

obeying the balance of pressure forces across the boundary. Methods include the 

Volume-of-Fluid (VOF), Marker and Cell (MAC) and Smoothed Partical Hydrodynamics 

(SPH) methods (Zijlema and Stelling 2011). Drawbacks to these model techniques 

include coarse resolution on the interwave scale, inaccurate velocity computations where 

the pressure boundary condition is not met, and computational inefficiency. Because of 

these inadequacies, it may not be possible to accurately predict the onset of wave 

breaking and energy transfers that occur at wave-blocking river inlets.  

The difficulties in modeling the pressure boundary condition necessitate non-

hydrostatic approximations at the free surface to achieve the pressure balance at the 

boundary. Stelling and Zijlema (2003) used a Keller-box staggered grid, allowing 

pressures to be defined at the vertical cell faces rather than cell centers. This pressure 

boundary simplification and staggered grid in the vertical direction allow for non-

hydrostatic approximations to be used at the surface, enabling wave propagation, 

turbulence, and solute transport calculations with fewer layers and a better representation 

of linear dispersion effects than previous models. 
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While the above approximations allow for the use of a non-hydrostatic pressure 

surface condition, models of turbulent conditions, such as wave breaking in the surf zone 

and run-up in the swash region, must be adequately modeled for shock propagation 

(Zijlema and Stelling 2008). This is accomplished by applying the Godunov-type 

approach for shock capturing and discontinuous flow. These schemes allow wave 

breaking to be calculated through a numerical approach rather than being prescribed in 

the modeling process (Ma et al. 2012).   
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III. MODEL DEVELOPMENT 

A. INTRODUCTION 

Two models were recently developed that use the non-hydrostatic Navier-Stokes 

equations in conservative form to model fully dispersive wave processes, NHWAVE 

(Non-Hydrostatic Wave Model) (Ma et al. 2012) and SWASH (Simulating Waves till 

Shore) (Zijlema et al. 2011).  To study the complex wave-current interactions at blocking 

locations, an effort was begun to look at laboratory data and attempt to replicate it in a 

model environment so that future application to field data would be possible.  

Initially, the SWASH model was tested to replicate the tank experiment data. 

SWASH is an open source code model simulating non-hydrostatic, free-surface, 

rotational flows in multiple dimensions. It is useful in predicting transformations of 

surface waves and rapidly varied shallow-water flows in coastal waters. It implements 

nonlinear shallow water equations and generally describes the complex changes due to 

rapidly changing parameters in a shallow water environment (Zijlema et al., 2011). This 

model has been through numerous benchmark tests and handles nearshore dynamics very 

well. The availability of implementation manuals, and vast examples of model use made 

independent work with the model possible. Ideally, this model would be able to handle 

the dynamics of the CK02 experiment.  

Initial test cases with the SWASH model looked promising. The first steps were 

to define a wave tank with a false wall to replicate a river inlet and induce a wave field 

with an opposing current. SWASH has a user-friendly interface and the process was 

relatively simple. Model runs with a monochromatic wave field imposed at the boundary 

were consistent with expected linear theory. Separate tests to determine the current input 

as a mass flux at the boundary were also successful. However, it was not possible to 

include both dynamic inputs in the model. The boundary inputs of the model could 

handle a wave field or a current, but not both imposed over each other at the same 

location. After repeated attempts to correct the problem through the code and different 

inputs, it became apparent that there was no further way forward and help from the 
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developers was needed. Discussion about the boundary condition issue was initiated with 

model developers; however, this was an issue that would not easily be resolved and other 

options needed to be explored.  

Open communication with peers at the University of Delaware in the Coastal 

Engineering Department facilitated discussion of the newly published model NHWAVE 

(Non-Hydrostatic Wave). Being able to consult with the developers of the model on a 

regular basis was of great importance. The model was published in May of 2012 and has 

undergone numerous benchmark tests. Contrary to SWASH, however, its main focus was 

on the prediction of Tsunamis and application to greater ocean depths than SWASH. 

These models differ primarily in their numerical approach to non-linear ocean processes. 

NHWAVE is developed for wave blocking in this research and described in the 

following.  

B. NON-HYDROSTATIC WAVE MODEL (NHWAVE) 

The NHWAVE model uses the σz coordinate system for both surface and terrain 

features as developed by Phillips (1957). The σz coordinate is defined as  

  z 
z  h 

D
  (9) 

where D is the total depth (h+η) and z is measured positive upwards from the still water 

level. The coordinate transformation maps the bottom and surface to constant boundaries 

of a strip of unit thickness.  

1. Governing Equations 

Using the conservative Boussinesq equations in general form  

   (10) 

Ψ is the vector for conserved variables and Θ(Ψ) is the numerical flux vector function. 


t

    S
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    (11) 

   (12) 

where (u,v) are velocity components in (x,y) and w is the vertical velocity in the σz 

coordinate system. The source term S, is composed of three components, bottom slope 

Sh, pressure gradient Sp, and turbulent mixing Sτ. 

   (13) 

here, p is dynamic pressure only. The k-ε closure model is used to calculate the turbulent 

diffusion terms , , . In NHWAVE, the free surface governing equation can be 

written as 
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   0   (14) 

The dynamic pressure in the source terms is calculated by solving the Poisson equation in 

(x, y, σz) coordinate system. Further details of the calculation techniques are found in Ma 

et al (2012). 
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2. Numerical Scheme 

Finite-volume and finite difference methods are used for special discretization. It 

is done in two steps, first using a reconstruction technique to compute values at cell 

interfaces, and second using a Reimann solver for numerical fluxes at the interface 

location. A central difference scheme is used for all source terms, S.  NHWAVE uses a 

second-order Strong-Stability-Preserving (SSP) Runge-Kutta scheme for non-linear 

discretization  

   (15) 

Within the above scheme, a two-step projection method splitting the time integration into 

hydrostatic and non-hydrostatic steps is used. An adaptive time step is used following the 

Courant-Friedrichs-Lewy (CFL) criterion. NHWAVE is run parallel using the domain 

decomposition technique. Non-blocking data communication between processors is done 

using the Message-Passing-Interface (MPI) when not in serial mode (Shi et al. 2012). 

Computationally, a staggered grid approach is used defining velocities at cell 

centers and pressure at the vertical facing wall similar to the Keller-Box scheme. This 

allows accurate treatment of the pressure boundary condition at the surface. NHWAVE is 

capable of simulating wave refraction, diffraction, shoaling, breaking, landslide tsunami 

generation, and alongshore current. It can predict surface wave processes using few 

vertical layers with good accuracy as seen in benchmark tests (Tehranirad et al. 2012). 

Wave breaking and associated energy dissipation are also reasonably predicted by the 

model. Additional details of the development and testing of NHWAVE are found in Ma 

et al. (2012). 

C. INITIAL MODEL TESTING 

There are limitations inherent to ocean modeling and numerical code. While 

modeling of the physical processes has become computationally simpler with 
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developments to wave theory, any computer simulation will have difficulty in modeling 

all variables and especially boundary conditions. 

There is a world of difference between the character of the fundamental 
laws, on the one hand, and the nature of the computations required to 
breathe life into them, on the other. Berlinski (1996) 

 The current study was conducted through several iterations of the NHWAVE code. Both 

modifications to the source code, compilers, and the executable files were needed to 

model the wave-current interactions in a tank. NHWAVE continues to be under 

development and shows promise for future modeling efforts. 

1. Wave Maker and Numerical Dissipation 

Many of the issues with boundary conditions came as a result of trying to have a 

boundary that would produce a wave field, and also have a constant current flow. This 

study facilitated the creation of an internal wave maker. The wave maker is rather simple 

in principle in that it requires an amplitude, period, and depth input parameter. It then 

creates a wave field from within the tank boundaries with propagation in both the positive 

and negative x direction. By having a wave source contained within the boundary, the 

issue of dual dynamic conditions at the east and west boundaries was solved. However, 

the simplistic wave maker did not produce waves at the exact amplitude as the input, 

therefore adjustments to initial conditions were needed.  

Initial tests of the model with waves only in the tank were conducted with a 0.1 m 

resolution in the x and y directions. The wave maker in the initial test introduced a wave 

field of 0.03 m amplitude and 1.2 s period. At this resolution, the internal linear wave 

maker is unable to produce a constant amplitude wave. Issues of numerical dissipation, 

seen in model data, caused amplitude damping that does not support wave theory (Figure 

2). Amplitude damping occurred within 10 m of the wave maker in both a square tank, 

and the test tank with the false wall simulating an inlet at this resolution.  
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Figure 2.  Wave height distribution through the tank at low resolution (0.1m) a.)  
Square tank. b.) Tank with false inlet wall. Vertical lines indicate  

first narrowing wall of the tank domain. 

By increasing the resolution to 0.025 in the x direction and 0.05 in the y-direction 

the wave maker was able to produce steady waves that maintained amplitude with 

minimal damping through a square tank as seen in the wave height plotted through the 

model tank (Figure 3, blue line). However, amplitude damping was still present in the 

tank with the inlet wall (red line) as a result of a boundary condition issue to be described 

hereafter. Each case shows a consistent wave through the wide area of the tank; however, 

the red profile begins to dampen considerably upon reaching the inlet wall at 39.4 m. 
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Figure 3.  Wave height at high resolution for waves in a square tank  
with no current (blue), and waves in inlet tank, no current (red).  

Numerical dissipation is caused by a numerical approximation of the partial 

differential equations assuming the theoretical equations are exact. For example, using a 

first order finite differencing scheme will truncate equations at the second order (dx2). 

The truncated terms may be diffusive or dispersive. In this model, the terms are diffusive. 

NHWAVE uses a numerical approximation to the partial differential equations governing 

the internal wave maker in the tank. This process causes a dissipation of the wave down 

the tank that is a result of the numerics of the model rather than an actual physical 

process. In the model results, the wave maker showed amplitude damping throughout the 

tank that improved with increasing the horizontal resolution.  
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2. Boundary Conditions 

In order to model the CK02 tank, great care was taken in developing the 

NHWAVE boundary conditions as mentioned previously. Having an internal wave maker 

was beneficial in simplifying the boundary inputs, however, other issues arose. Because 

the waves were created inside the domain, waves propagate in both directions and need to 

be dissipated at the boundaries to negate reflection from the east and west walls. 

Absorption of mass flux and energy at the boundary is also a concern for the current 

imposed in the domain. If the current is allowed to reflect off the boundaries, oscillations 

in the tank will form and create issues in the data.  

Sponge layers on either side of the tank were created to dissipate wave energy and 

mass flux from the current. Throughout the modeling process modifications to the source 

code, to include dimension and decay coefficients, were needed in order to negate as 

much reflection from the tank “walls” as possible. By creating a low-pass filter imbedded 

in the sponge layers, oscillations and reflections were decreased to almost zero. The filter 

allows the current to pass through at a constant speed while filtering out any wave action. 

Wave energy is absorbed into the sponge layers at the east and west boundaries (Figure 

4). Development of this aspect of the model is crucial to future iterations and uses of the 

model in experimental tank applications.   
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Figure 4.  Low pass filtered sponge layers showing wave dissipation in the  
sponge layer with a .03 m 1.2 s wave, no reflection.  

Sponge layers are? 7 m wide. 

No-slip boundaries were used on the north and south walls of the tank. This was 

done to reduce any change in current velocities or the wave field in the cross-tank 

dimension. Also, the bottom was defined as frictionless to maintain the constant vertical 

distribution of current assumption. The vertical and cross-tank distribution of current for 

the test cases shows little variability (Figure 5). This allows one-dimensional theories to 

be applied to the CK02 and model results. 
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Figure 5.  Vertical current distribution at a)  31.5 m and b)  33 m. c)  
Horizontal distribution across the tank at location 25 m. 

3. Computational Efficiency 

NHWAVE is set up to run in either parallel mode, using the message-passing 

interface (MPI), or in serial mode where a single node of computing is used. For this 

study, the high-powered computers in the Mills cluster at the University of Delaware 

were accessed to run the model. The model was programmed in Linux and Fortran. Due 

to nodal structure, computational efficiency was greatly increased by running in parallel 

mode. This was especially evident as grid resolution in the model was increased. Due to 

the nodal structure of the computers, computational hours were shared with the Coastal 

Engineering group at UDel. At times, finding available nodes to run model simulations 

was difficult and caused delays in data acquisition. 
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To compound the issues of nodal effects in high-powered computing, the Mills 

cluster suffered a catastrophic failure. Of the six hard disks comprising the cluster 

system, data can be preserved if two or fewer disks suffer failure. In the process of 

running and compiling this model, three hard disks were destroyed, this caused a 

catastrophic failure of the supercomputing capability at UDel and data along with model 

updates were lost. Recreating the model data was both difficult and time consuming. 
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IV. EXPERIMENTAL APPROACH 

A. INTRODUCTION 

Measurements from the accompanying data report to CK02 are used to test 

NHWAVE model output for cases of refractive shoaling through a tank of varying width. 

Each simulation was done using monochromatic waves on a constant opposing tidal flux. 

A two-dimensional wave tank domain modeled after the CK02 tank experiment was 

created to simulate a river inlet. The goal was to see how well NHWAVE predicts wave-

current dynamics in regions where wave-blocking occurs and compare results to those of 

CK02 in the hope of verifying the application of NHWAVE to wave blocking cases. 

B. TEST TANK CONFIGURATION 

The CK02 data set was acquired in a 30.0 m long recirculating wave flume at the 

Center for Applied Coastal Research at the University of Delaware. The width of the 

flume is 0.60 m wide with a constant depth of 0.50 m (Figure 6). The coordinate system 

is oriented so that the positive horizontal axis, x, is the direction of wave propagation, 

x=0 at the location of wave generation. The y-coordinate axis has an origin on the 

continuous sidewall (right side) and points toward the narrowed wall that was created to 

represent the inlet. The z-axis is positive upwards with z=0 at the still water level.  

A false wall was implemented starting at x=12.4 m to gradually narrow the tank 

to 0.36 m by 15.2 m in the tank. The narrowing of the channel was designed to represent 

a tidal inlet where energy density and current velocity would increase in the narrow 

section of the tank. This design, coupled with a constant opposing current, was intended 

to block waves with periods up to 1.3 s in a 0.5 m depth. The depth-averaged current 

throughout the flume was increased through the narrow shoal region, but maintained 

relative depth uniformity. After 4.9 m of the narrow section, the tank width gradually 

widens at five degrees to the original dimensions negating flow separation at the 

transition.  
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Figure 6.  Schematic for Chawla and Kirby tank experiment  
(After Chawla and Kirby 2002). Not to Scale. 

Waves were generated on the west side, (x=0). The current was created by 

drawing water from behind the perforated wave maker and pumping it to the opposite 

(Eastern) end of the tank. Care was taken to ensure there were no large-scale eddies. A 

complete description of the mechanics of the wave tank and the experimental method in 

the lab are found in Chawla and Kirby (1999).  

For the CK02 data, capacitance wave gauges were used to measure the free 

surface elevation and Acoustic Doppler Velocimeters (ADVs) measured fluid velocities. 

In the model applications, free surface elevation and fluid velocities were calculated at 

approximately the same locations as the CK02 instruments (Figure 6).  

C. MODEL SET-UP 

1. Domain 

NHWAVE was initialized with a domain that was altered from the original tank 

experiments to account for model boundary condition constraints. The bottom grid was 

produced in a Matlab environment to simulate a tank that measured 70 m X 0.6 m (Figure 

7). By increasing the length of the tank, effects from the wave-maker were reduced. The 

coordinate axis are the same as in the CK02 experiment. The computational grid was 

configured with 0.025 m resolution in the x-direction and 0.05 m resolution in the y-
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direction. The depth was set at 0.5 m and the model was run with five vertical layers. A 

false wall was initiated at 39.4 m increasing in width from the tank sidewall boundary to 

narrow the channel to 0.4 m at 42.2 m in the domain. The simulated inlet then extends for 

10 m before expanding at the same ratio to the original with of the tank, see Figure 3.  

A time step of 0.1 seconds was used for computational efficiency while maintaining high 

enough temporal resolution. Output was computed at gauge locations closely resembling 

the locations in CK02.  

 

Figure 7.  Schematic for NHWAVE model setup. Not to scale. 

The artificial inlet wall was moved to many different locations in the tank and 

changed in dimension to attempt to replicate the currents and wave amplitudes present in 

CK02. The wall was defined with a no-slip boundary, which should have produced wave 

reflection and amplification in the tank when a current was not included. However, as the 

model results indicate, there was significant amplitude damping through the narrowed 

inlet (Figure 3).  After increasing resolution to account for numerical dissipation, it was 

evident that the boundary conditions were not resolved for the model domain when a 

false wall was implemented. 

Previous versions of NHWAVE were run in a domain replicating bathymetry 

present in the field. The boundaries in these cases are dissipative in that landmasses are 

absorb wave energy. This land masking allows the model to run with dissipation effects 

that would be expected in the environment. In the tank domain the depth of the tank was 
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0.5m. The false inlet wall was defined by a trapezoid that stood 1.0 m above the still 

water depth. This involves the model needing to account for wetting and drying of the 

boundary. The non-hydrostatic approximation allowed for pressure perturbations and 

vertical velocities to be introduced in the domain. In the tank model runs, the pressure 

field showed errors in the presence of dry points in the domain. This boundary issue will 

need to be resolved in the future development of the model.  

2. Wave Maker 

Waves were created by a linear wave maker located 15 m in the tank. Due to the 

simplicity of the wave-maker, model input was adjusted to replicate wave amplitude at 

the first gauge in the experimental data. In CK02 the initial conditions were defined at the 

first gauge location that varied between 4.6 m to 5.8 m before the narrowest part of the 

channel; the initial conditions in the model were defined at similar distances from the 

narrowed inlet but implemented to replicate CK02 experimental data.  

3. Sponge Layers 

Sponge layers 7 m thick were placed at each end. The sponge layers were made 

thick and with a low decay rate to allow waves and currents to reach the boundary with 

little reflection back into the tank from the east/west boundary. This tank set-up with 

appropriate sponge layers allows simulating a refraction only inlet where wave blocking 

occurs close to the narrow part of the “inlet.”  

4. Current Flow 

The mean current was assumed uniform in the vertical and cross-shore, due to the 

no-slip boundary verified previously. The current was given by 

 U  
Q

bh
  (16) 

where b is the width of the channel and Q is the volume flux prescribed as a tidal flux in 

the input boundary conditions. In this equation, boundary layer effects are ignored so that 

the value of Q was adjusted to 0.05 m3/s to match the data. The measured and calculated 

horizontal current profile through the narrowing of the tank is presented in (Figure 8). 
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The profile agrees well with theory in the transition to the inlet and the faster laminar 

flow located there. There is an increase in the current speed just prior to the inlet opening 

back to the width of the channel. This jump could lead to inconsistencies in data at the 

inlet transition area. This deviation from the tank data is due to a pressure field imbalance 

at the inlet boundary to be explained in Chapter V.  

 

Figure 8.  Horizontal current distribution through the narrowing of the inlet.  
(Model output circles (o), and theory solid line.) 

As determined in the development of the model, vertical and cross-tank horizontal 

velocity mean profiles through 400 s in five different locations within the tank showed 

little variation, and thus the uniform assumption was valid. This allows for application of 

equations in a one-dimensional sense. Velocity profiles throughout the tank show relative 

depth uniformity with an average current of 0.2 m/s outside the inlet and 0.32 m/s  
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throughout the narrowed section (Figure 9). Decreasing the current from CK02 

observations allowed a slower transition through the inlet and less instability in the model 

data.   

 

Figure 9.  Vertical current distribution in five locations along the tank. 

The current in the model tank showed inconsistencies through the narrowed inlet. 

Laminar flow was present in the wide area of the tank at both the east and west side just 

after the sponge layers. As the current flows over the narrowing section of the wall from 

the east, there is marked instability. Laminar flow is then re-established through the 

narrow section, this is where model conditions were measured from for data comparison 

(Figure 10). The surface current becomes faster than the current at the bottom of the tank. 

This creates a bore-like situation where one shouldn’t be present and suggest that there is 

a boundary problem. The current then “jumps’ before exiting the inlet. This could be the 
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cause for what appears to be wave blocking in the model data, however it is a function of 

problems with the pressure field around the false wall.  

In examining the current only case the surface also shows shape change over the 

opening of the inlet (Figure 10). The inconsistencies over the eastern narrowing are 

present, as well as a dip in elevation at the opening of the inlet. Froude numbers in the 

narrowed inlet were 0.14 and decreased to 0.07 in the less constrained flow. These 

numbers do not indicate an approach to critical flow and therefore, super-critical flow 

should be excluded from consideration for the formation of a bore-like element. These 

inconsistencies in the data perpetuated more development of the numerical scheme for 

boundary conditions. 

 

Figure 10.  Surface elevation in the current only case (green).  
Current profiles at surface (red), and at tank bottom (blue).  

The wet/dry boundary issue also causes vertical velocities to appear with changes 

in the pressure field. The laminar flow should show no vertical accelerations whether in 
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the inlet or in the wide area of the tank. As the current flows through the inlet, the orbital 

velocities show vertical flow, an unexpected result in the model (Figure 11). This occurs 

both at the eastern side of the inlet, where flow is restricted, and also at the opening of the 

inlet to dissipative laminar flow. This result is shown through all layers of the current 

flow. 

 

Figure 11.  Vertical velocity instabilities in the current through the inlet. Multiple colors 
indicate multiple layers from magenta at the surface, to blue, red, and then green 

at the bottom. 
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V. WAVE BLOCKING TESTS 

A. INTRODUCTION 

The extensive data that were collected for CK02 is compared to NHWAVE model 

data. In the CK02 test cases, wave periods ranged from 1.2 to 1.6 s. The waves created in 

the experiment were intermediate-depth water waves with kh values outside the narrow 

channel ranging from 1.35 to 2.4, as determined using a Doppler-shifted linear dispersion 

relation (Chawla and Kirby 2002). The kh values increase inside the narrow channel 

where currents are stronger. By narrowing the channel in the experiment, waves were 

shown to shoal with or without an opposing current. Conditions meant to replicate this 

data were explored in the model. The results of the NHWAVE model runs were not 

accurate in predicting the wave blocking and breaking conditions as seen in CK02. 

Constraints in modeling in a tank domain have been found to cause instabilities and false 

results in the model.  

Each case for monochromatic waves was divided into two parts, small amplitude 

where waves should reflect from the blocking point without breaking, and larger 

amplitude waves where breaking occurs. The study of the amplitude envelope through 

the blocking region as well as the energy transformation and dissipation through the 

region was accomplished by implementing a range of wave heights with different wave 

periods in the experimental and model initial conditions. Each model run was conducted 

to attempt to mimic the wave blocking results in CK02, however, the model was 

unsuccessful in resolving the wave components with the current numerical scheme. 

B. THEORETICAL EXPECTATIONS AND CK02 RESULTS 

1. Monochromatic Small Amplitude Reflected and Blocked Wave Tests  

In monochromatic, small amplitude tests, wave energy cannot propagate beyond 

the blocking point and no energy is lost due to breaking at or before the blocking point; 

therefore, there is wave reflection. From previous studies, these reflected waves are 

unique in that the phase speed of the waves continues to move against the current, 

however, the group velocity moves with the current with the wave energy (Chawla 1999). 
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For the monochromatic wave blocking tests, three different periods were used with 

increasing wave amplitude to study the wave amplitude dynamics through the blocking 

region and were compared to CK02 data.  

In linear wave theory, if there is no wave breaking in the domain and the wave 

amplitude and steepness is small enough that waves will be reflected from the blocking 

point with a different wave number. The amplitude envelope of these waves through the 

blocking point resembles an Airy function (Peregrine 1976). CK02 data verified this 

results for small amplitude monochromatic wave tests.  

In the experimental data, the change in the amplitude envelope is clearly visible in 

the smallest wave cases. The test cases presented here are for the 1.2 s period. Wave 

height measurements are made in relation to the blocking point with x=0 indicating the 

narrowest part of the test tank. As the amplitude increased and approached the breaking 

steepness criteria as defined by Miche (1951), the node and antinodal resemblance to an 

Airy function is diminished (Figure 12). Non-linear effects change the steepness of the 

wave reflection response, which can be seen by the increasing deviation in the primary 

wave’s peak and slope as the amplitude increases.  
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Figure 12.  Comparison between measured CK02 data and Airy function  
for small amplitude monochromatic waves. Amplitude increases  

from 1.3 cm in test 2 to 1.6 cm in test 5 (From Chawla 1999).  

2. Monochromatic Breaking Wave Tests 

In CK02, each test was conducted similar to the small amplitude conditions in that 

multiple amplitudes were examined for different wave periods. A simple numerical 

model was created to study the wave breaking in this tank configuration. The bore model 

using third order Stokes relations were able to handle the location of the breaking and 

blocking of the wave field well. However, it was insufficient to predict the side-band 

instabilities and energy shifts seen in the data. The hope was that NHWAVE would be 

able to predict these. 
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a. Energy Spectra 

One of the main findings in CK02 was the frequency downshift in the 

energy spectrum of monochromatic breaking waves. This shift is a result of the nonlinear 

side band instabilities. These are dependent on the frequency and amplitude of the wave 

field and effect the wave propagation greatly (Benjamin and Feir 1967). As the waves 

become steeper on the opposing currents and approach the blocking point, the group 

velocity approaches zero and wave energy travels very slowly (Lai et al. 1989). Therefore 

energy can be shifted to a lower sideband, which requires a higher blocking current. This 

will allow the wave components in this lower side band to travel into the narrow inlet 

while the higher frequency waves are blocked, and further increase the energy in the 

lower side-band as a function of distance through the inlet. The result is that the primary 

wave component has reached its blocking condition, while the lower sideband propagates 

through the channel.  

The spectra from CK02 wave breaking conditions show the frequency 

shift to lower sidebands (Figure 13). For probe locations around the blocking point, 

indicated in CK02 as x=0, the primary (P), upper (U), and lower (L) sidebands show 

modification of the frequency spectra. Energy in the upper and primary sideband 

decreases with progression into the inlet while there is marked lower sideband growth. 

This supports the theory of higher frequency energy being blocked while lower sideband 

waves are allowed to propagate through the inlet. The non-linear aspect of the lower 

sideband growth was not predicted by the simplified model used in CK02. 
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Figure 13.  Frequency spectra for a wave breaking test from CK02 with period=1.26 s  
and amplitude=0.126m (L=lower side band, P=primary side band,  

U=upper sideband) (From Chawla 1999). 

C. NHWAVE PRELIMINARY RESULTS 

Model output of surface height, η, and velocities in the u, v, and w directions were 

output in the model over the domain and through the five vertical layers in the simulated 

tank. Comparison tests for CK02 data were unsuccessful. However, recent developments 

have made some wave blocking cases in a tank with a narrowed inlet possible.  

1. NHWAVE Performance  

Each case of monochromatic wave blocking and wave breaking was initially 

attempted in NHWAVE for comparison to data from CK02. Wave height distributions 

through the blocking point show vast differences from theory and experimental data due 

to the unresolved boundary conditions. In some cases NHWAVE showed a wave height 

distribution that appeared to have wave blocking for the range of small amplitude waves 
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tested. In these cases, the reflected wave was not apparent in any of the measurements. 

Coupled with the wave dissipation caused by the pressure field inaccuracy through the 

inlet, these results do not verify the model. 

Larger amplitude waves cases were also examined using the wave height 

distribution to determine if the waves broke at, or just prior to, the blocking point of the 

inlet. In those tests where a steep drop in amplitude around the blocking point indicated 

that waves were breaking, wave period and spectra were examined and compared to 

CK02 data. The model shows significant deviation from the expected wave height 

distribution and energy spectra through the blocking point and into the inlet. 

2. Recent Model Developments 

Preliminary results from a new iteration of NHWAVE are promising for wave 

blocking cases. For these cases a new tank domain that measured 35 m long by 0.6 m 

wide was created (Figure 14). The tank has a simulated inlet 7.5 m long centered at 20 m 

in the tank. The inlet narrowed the overall width of the tank to 0.3 m. For the new test 

cases, resolution was 0.025 in x and 0.05 in y. This was shown previously to negate 

numerical dissipation issues from low resolution test runs. Sponge layers were 5 m thick 

on either end of the tank and had the same decay coefficients and low pass filter as used 

previously.   

 

Figure 14.  Simplified test tank for preliminary model results. (Not to Scale) 
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By implementing a new Poisson solver for the issue of the land masking and the 

wet/dry boundary, the pressure field inconsistencies have been resolved. In a simple tank 

with an inlet wall halfway down the “tank” wave amplitude increases through the inlet  

as would be expected before decreasing due to diffraction as the tank widens again 

(Figure 15).  

 

Figure 15.  Wave height in simplified tank. Inlet wall location is indicated by the  
trapezoid, the wave maker is located at the vertical line. 

a. Preliminary Wave Blocking Results 

For small amplitude waves, blocking conditions were met in the 

NHWAVE data. Waves shoaled slightly as they approached the wall and decrease in 

amplitude due to the opposing current at the end of the inlet.  As the current is increased 

from 0.28 m/s (Figure 16a) in the tank to 0.35 m/s (Figure 16b), the blocking criteria is 

reached for the test wave of period 1.3 s and initial amplitude of 0.09 m. With increased 
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current, the shoaling is more pronounced and the wave steepness is greater. This causes 

the wave to break as seen in the rapid decrease in wave amplitude. Therefore, for small 

amplitude waves, the effect of increased current through the inlet shows blocking criteria 

being met for the given wave parameters.  

 

Figure 16.  Small amplitude wave blocking and reflection. Solid lines indicate the  
boundaries of the inlet wall. a) Opposing current=0.28 m/s b) Opposing 
current=0.35 m/s. Vertical lines indicate the boundaries of the inlet wall. 

Similarly, in a large amplitude cases, with a period of 1.3 s and amplitude 

of 30 cm, waves show an increase in amplitude just prior to the narrowing of the inlet and 

breaking at the narrowest section for the larger current. Again implementing an opposing 

current of 0.28m/s caused the waves to shoal against an opposing current, but not break 

(Figure 17a). With increased speed, 0.35 m/s, the waves broke upon entering the 

narrowed inlet (Figure 17b). This is consistent with the theory presented here as well as 

the results from CK02.  



 39

 

Figure 17.  Wave height distribution for a large amplitude wave breaking case.  
Vertical lines indicate the boundaries of the inlet wall. 

Time series analysis for energy spectra were not available due to the 

shortened data record for the simplified cases. Further statistical analysis is needed to 

determine if NHWAVE can be validated in comparison to CK02 for wave blocking 

cases. 

3. Extension to Random Wave Spectra 

The validation attempts for NHWAVE were conducted with monochromatic 

waves only. One of the benefits of the CK02 data was examining the changes in the 

frequency spectra through the breaking and blocking region with wave groups. Extension 

to more realistic spectra for a better understanding of the environment is needed in 

NHWAVE. Currently, efforts to include implementing Jonswap spectra are being 

attempted. However, results are not reliable at this time. 
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VI. CONCLUSIONS 

The complex dynamics of wave blocking are difficult to model. Current wave 

averaged models under predict the non-linear processes that occur within short distances 

of a wave blocking location. Two models were recently developed to model fully 

dispersive wave processes and were explored for their use in river inlets where blocking 

conditions exist. The testing of both SWASH and NHWAVE proved boundary conditions 

involved in a tank setting necessitated modifications to the model code and numerical 

processes therein.  Multiple iterations of NHWAVE were developed for this application 

and resolution of boundary condition issues proved difficult, but in the end, successful. 

Model testing using a series of monochromatic wave cases on opposing blocking 

currents was conducted with NHWAVE. Two classifications of tests were presented, 

those with small amplitudes where waves were reflected, and those with higher 

amplitudes that demonstrated wave breaking prior to the blocking point. These tests were 

compared to data from CK02.  

Data from CK02 were able to show monochromatic wave blocking and wave 

breaking on opposing currents. Waves that were reflected at the blocking point showed a 

distribution close to an Airy function for small amplitude waves. This is a close 

approximation to linear theory that breaks down as wave amplitude increases. In larger 

amplitude wave breaking cases non-linear effects are increased and seen in the energy 

spectra. The changes in the energy spectra indicate unstable sideband growth that is 

difficult to model. NHWAVE in its current state is unable to replicate the CK02 tank 

experiment due to boundary conditions that cause amplitude dissipation through the 

narrowing of the inlet.  

Future work on random wave field input to NHWAVE as a Jonswap spectrum is 

needed. At the moment, the model is unable to handle a random wave field or wave 

group that would be more pertinent to field data.  

NHWAVE, while still under development, allows us to explore many conditions 

that are not always possible with field or lab measurements and shows promise as an 
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accurate predictor of wave-current interactions and wave blocking. In comparison to 

CK02 lab data, there are shortfalls in the numerics of the model that are greatly affected 

by boundary conditions. Preliminary results with improved equations for boundary 

conditions show promise for future implementation of the model. More development will 

lead to improved understanding of the wave blocking conditions in river inlets. The 

future implementation of a non-hydrostatic model for the intense kinematic conditions in 

wave-current interactions and wave blocking scenarios will be a valuable addition to our 

knowledge base of these turbulent areas.  
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